Reuse of Alternative Water Sources for Cooling Tower Systems—Two Case Studies Using Non-Traditional Water Sources

Matthew L. Haikalis Veolia Water Solutions & Technologies

April 24, 2013

Operational Priorities and Challenges for Cooling Tower Systems

- Water supply
- Water quality
- Discharge options
- Air permitting contraints
- Energy supply
- Energy Efficiency
- Performance
- Reliability

Resource Recovery Priorities

- Conserve limited fresh water supplies
- Avert discharge that contaminates fresh water
- Increase recovery and utilization of waste water or grey water sources
- Cost feasible technology to enable expanded use of recovered waste water
- Cost feasible use of impaired or alternative water sources
- Avoid bad tradeoffs that consume other limited resources to recover water (energy-water nexus)

Water-Energy Nexus

- 47% of US water used in producing energy
- Then we consume energy to manage water ...
 - > Purify and transport water
 - Supply water to cooling towers
 - > More water to replace wasted tower water
 - > Treatment of the wasted water

Cooling Tower Water-Wastage Nexus

- 410 billion gallons of water consumed daily
- 80% used for irrigation and power generation
- Power plants use the most in their towers
- Then supply over 400,000 cooling towers in US
- That typically waste 20-40% of the water
- "Cooling towers a herd of fresh water wasting 800 pound gorillas that we have ignored"

How Natural Chemistry Works

- The major surface water minerals are Ca, Mg, Na, Cl, SO4, alkalinity and silica
- HES softening replaces hardness with high solubility sodium salts that do not form scale
- Evaporation of tower water saturates silica, TDS salts and alkalinity that cause silica to form silicates
- The silicates are outstanding corrosion inhibitors, and do not form scale or deposits

Case Study: Southeast Air Separation Unit

Facility Description

- ♦ 250 ton liquid oxygen/nitrogen plant with a single cooling tower system for air/nitrogen compressor cooling and bearing oil cooling.
- ◆ Site is ZLD, requiring the reprocessing of source water and cooling tower filter backwash water. Regenerate waste collected and hauled off-site. System volume roughly 150,000 gallons
- Make-up water is extracted from a swamp located next to the facility, with the following water characteristics:

Parameter:	Range:
рН	7.4 – 8.5 s.u.
M- alkalinity	30 – 200 ppm
Silica	1.3 – 9.8 ppm as SiO ₂
Chlorides	30 – 100 ppm
Total Hardness	40 – 150 ppm
Total Dissolved Solids	70 – 440 ppm

- Treatment Options
 - ◆ Acid, Biocides, Scale/Corrosion inhibitors including make-up water and side-stream softening. Haul off brine waste
 - ♠ Reverse osmosis with clarification or filtration pretreatment on make-up water with evaporation/crystallizer for waste streams or haul off
 - ◆ ZLB technology with filtration as pretreatment with waste haul-off or small evaporator/crystallizer system
 - Option chosen needed to be plug-and-play with minimal capital investment

Case Study: Southeast Air Separation Unit

Cooling Tower & Swamp

Case Study: Southeast Air Separation Unit

- Approximate water savings of **3,000 GPD**.
- Current water chemistry for the recirculating cooling system:

Parameter	ZLB Operating Range	Expected Traditional Operating Range
TDS	50,000 – 80,000 ppm	< 3,000 ppm
Total Hardness	< 30 ppm	Up to 1,200 ppm w/ acid
рН	≈ 10.0 s.u.	7.0 – 7.5 (stabilized PO4 w/ acid) 8.7 s.u. alkaline
Silica	> 400 ppm	< 150 ppm
Cycles of Concentration	> 300	3-8
Corrosion Rates	Mild Steel: 0.50 to 1.50 mpy Copper: 0.01 – 0.10 mpy	2.0 – 5.0 mpy 0.10 – 0.60 mpy
Chlorides	> 5,000 ppm	< 500 ppm

Facility Description

- ◆ Pharmaceutical R&D facility and data center
- ◆ Three separate cooling tower systems (2 HVAC, 1 data center); 7,600 tons of installed mechanical refrigeration capacity
- Make-up water a combination of well water, city water, and industrial wastewater

Challenges for site:

- ◆ Limitations of well water extraction from water table (local township authority)
- ◆ Elevated costs for city water make-up (new pipeline had to be installed)
- ◆ Limitations on both quality and quantity of water to NPDES discharge point (no connection to municipal sanitation system)
- ◆ Industrial WW comprised of cooling tower and boiler blowdown streams, acidic and caustic lab waste, pharmaceutical compounds

Case Study: Northeast Pharmaceutical Plant

Case study. Northeast Fharmaceutical Flam

- Previous Treatment Program and Issues
 - ♦ 4 to 5 cycles of concentration with biocides and scale/corrosion inhibitor addition
 - Significant scaling and fouling issues in tower fill, piping, and heat transfer surfaces
 - ◆ Traditional water treatment option placed constraints on plant's ability to handle high-water demand situations
- Zero Liquid Blowdown Implementation
 - ◆ Installation of high efficiency softening system to process all makeup water sources through a common system
 - Softened make-up water distributed to three systems
 - Design allowed for flexibility when going between water sources
 - ◆ Adjustments made only to HES system (throughput settings), simplifying water chemistry

Case Study: Northeast Pharmaceutical Plant

O

Results

- ◆ Projected water savings of 3.6 million gallons per year
- ◆ Ability to switch seamlessly between water sources without significant O&M involvement (HES system throughput settings)
- ◆ Significant clean up of mineral scale/foulants from cooling tower fill, piping and heat transfer surfaces (6 month transition period)
- ◆ Provides buffer capacity in WWT system to discharge water at leisure versus detention and discharge

High Level Impact

- Success at this site allows client to implement strategy across several sites across the country
- ◆ Flexibility in source water make-up options (Industrial WW, storm water, HVAC condensate, grey water, well water)
- ♦ Will help meet client's 5% per year, 5-year fresh water reduction strategy

Case Study: West Coast University Chiller Plant

Facility Description

- ◆ Centralized chiller plant with two, 1,250-ton absorption chillers
- ◆ Previous water source was city water, with variable water quality
- ♦ Issues included: tube sheet degradation, heat transfer surface fouling, and concrete sump deterioration
- ♦ Water treatment program included the use of acid, oxidizing biocides and corrosion/scale inhibitors

•

Case Study: West Coast University Chiller Plant

- An alternative program was selected that provided the following benefits:
 - Switch from city water to municipal wastewater
 - An increase in cycles of concentration from 3 to 5 to over 100 COC
 - A significant improvement in waterside conditions, including mild steel corrosion control, an elimination of heat transfer mineral scale, and a reduction in concrete degradation
- Water Quality & Challenges
 - 800 to 1,500 TDS
 - 30-50 ammonia

Case Study: West Coast University Chiller Plant

Concrete Tower Basin

Prior Absorber Corrosion

Current Steel Corrosion Rates < 0.1 MPY

Case Study: West Coast University Chiller Plant

Tons Tower Capacity	Peak Flow GPM	Installed \$ Cost Estimate	MGY Water Saved *	\$ /yr Water Cost Saved*	ROI Months		
250	7	6000	1.2	7200		10	
500	13	12000	2.4	14000		10	
1000	25	18000	4.8	28800		8	
1500	38	24000	7.8	46800		6	
2000	50	30000	10	61200		6	
3000	75	35000	15	90000		5	
4000	100	50000	20	122400		5	
5000	125	60000	24	144000		5	
10000	250	175000**	49	288000		7	
20000	500	300000**	99	576000		6	

^{*60%} of design average load ** Includes bulk salt handling system

Case Study: Midwest Mission Critical Data Center

Facility Description

- ◆ This is a mission critical data center, requiring 100% uptime
- ◆ Three centrifugal chillers, each approximately 600 tons for a combined capacity of 1800 tons
- ◆ Source water is onsite well water, with the following water characteristics:

Parameter:	Range:
рН	8.2 – 8.5 s.u.
M- alkalinity	250 - 350 ppm
Silica	25 – 30 ppm as SiO ₂
Iron	<0.1 ppm
Total Hardness	350 – 400 ppm

Cooling Towers

Chillers

High Efficiency Softening System

(

Current water chemistry for the recirculating cooling system:

Parameter	ZLB Operating Range	Expected Traditional Operating Range
TDS	80,000 ppm	< 2,000 ppm
Total Hardness	< 20 ppm	Up to 1,200 ppm w/ acid
рН	≈ 10.0 s.u.	7.0 – 7.5 (stabilized PO4 w/ acid) 8.7 s.u. alkaline
Silica	> 400 ppm	< 150 ppm
Cycles of Concentration	> 200	2.5 – 4.0
Corrosion Rates	Mild Steel < 0.04 mpy	0.5 – 5.0 mpy
Corrosion Rates	Copper < 0.01 mpy	0.1 – 0.5 mpy

Case Study: Midwest Mission Critical Data Center

- Satisfied Client
- All of the program goals have been met or exceeded
- Cooling tower treatment program is 100% chemical free with the exception of sodium chloride salt
- This client will be mandating ZLB technology at all data centers
- Approximately 4.5 million gallons per year of water reduction

Opportunities

①

- There are significant opportunities for water use or reuse from a variety of alternative sources for cooling towers:
 - ◆ Rainwater, condensate from HVAC systems, municipal wastewater, storm water, reverse osmosis reject, boiler blowdown, etc.
- ... Using available commercial technologies that are:
 - ◆ Easy to operate
 - Maximizing water conservation
 - Energy responsible
 - ◆ Cost feasible
- ... And that
 - Minimize risk from a safety and asset standpoint
 - Positively impact water and carbon footprints

Thank You!

